Part A

Measure each angle below with a protractor. Then choose a word from the list to name each angle type: acute, obtuse, adjacent, right.
1.

2.

$\mathrm{m} \angle C A P=$ \qquad
\qquad
__ angle \qquad angle
3.

$\mathrm{m} \angle T=$ \qquad
4. a. What is a reflex angle?
\qquad angle
5. Write the number that has

4 in the ones place,
a digit in the hundred-thousands place that is twice the digit in the ones place,
the smallest odd digit in the millions place,
7 in the tenths place, and
0 in all other places.

LESSON $3 \cdot 11$

Written Assessment continued

Use your Geometry Template to do the following:
6. Draw an equilateral triangle.
7. Draw an isosceles triangle that is not equilateral.
8. Draw a scalene triangle.
9. List at least one way in which an equilateral triangle and a scalene triangle are the same.
\qquad
\qquad
10. List at least one way in which an equilateral triangle and a scalene triangle are different.
\qquad
\qquad
\qquad
For each polygon below, fill in the ovals next to all true statements.
11.

0 This polygon is a quadrangle.
0 At least two sides are parallel.
0 At least two angles are congruent.
0 This is a regular polygon.
12.

0 This polygon is a quadrangle.
0 At least two sides are parallel.
0 At least one angle is acute.
0 At least two angles are congruent.
0 This is a regular polygon.

Written Assessment continued

Part B

Find the missing angle measure without using your protractor.
13.

14.

4.
$\overline{A B C}$ is a straight line.
$\mathrm{m} \angle E=$ \qquad
$\angle \angle E=\square$
$\mathrm{m} \angle D B C=$
\qquad
15.

Each angle of the regular hexagons at point H has a measure of \qquad
16. Name two adjacent angles in Problem 13.
17. a. At the right, use a straightedge to draw a pair of adjacent angles. Make one of the angles obtuse. Use letters to name the angles.
b. Tell which angle is obtuse.
\angle \qquad
c. Without using your protractor, estimate the measure of each angle to the nearest 10°.
$\mathrm{m} \angle$ \qquad is about \qquad . $m \angle$ \qquad is about \qquad .
18. Use the table below to answer the questions on the next page.

Regional Populations 1850-2000				
Region	$\mathbf{1 8 5 0}$	$\mathbf{1 9 0 0}$	$\mathbf{1 9 5 0}$	$\mathbf{2 0 0 0}$
Northeast region	$8,627,000$	$21,047,000$	$39,478,000$	$52,107,000$
South region	$8,983,000$	$24,524,000$	$47,197,000$	$97,614,000$
Midwest region	$5,404,000$	$26,333,000$	$44,461,000$	$63,502,000$
West region	179,000	$4,309,000$	$20,190,000$	$61,412,000$

LESSON $3 \cdot 11$
 Written Assessment continued

a. Which region had the smallest population in 1950 ? \qquad
b. Which region had the smallest population 50 years later?
c. Which region had the greatest increase in population from 1850 to 2000 ?
\qquad
What was the increase? \qquad
19. Use the pattern-block shapes on your Geometry Template to make a pattern that tessellates below. (The pattern-block shapes are marked PB.)
20. Explain why your pattern is a tessellation.

$3 \cdot 11$
 Progrpess Chealk 3

Objective To assess students' progress on mathematical content through the end of Unit 3.

Assessing Progress

Progress Check 3 is a cumulative assessment of concepts and skills taught in Unit 3 and in previous units.
See the Appendix for a complete list of Grade 5 Goals.

materials

\square Study Link $3 \cdot 10$
\square Assessment Masters (Assessment Handbook, pp. 164-169)
\square slate

CONTENT ASSESSED	LESSON(S)	ASSESSMENT ITEMS			
		SELF	ORAL/SLATE	WRITIEN	
				PART A	PART B
Identify place value in numbers to billions. [Number and Numeration Goal 1]	$\begin{gathered} 3 \cdot 1,3 \cdot 3,3 \cdot 5, \\ 3 \cdot 7,3 \cdot 9 \end{gathered}$	1	1, 3	5	
Determine angle measures based on relationships between angles. [Geometry Goal 1]	$\begin{gathered} 3 \cdot 3,3 \cdot 5,3 \cdot 6, \\ 3 \cdot 8-3 \cdot 10 \end{gathered}$				13, 14, 15, 17
Identify types of angles. [Geometry Goal 1]	$\begin{gathered} 3 \cdot 3-3 \cdot 5, \\ 3 \cdot 10 \end{gathered}$	2		4	16
Measure angles. [Geometry Goal 1]	3•4-3•7, 3•9	3		1, 2, 3	
Draw and identify types of triangles. [Geometry Goal 2]	3-6, 3•10	4, 5, 6		6-10	
Compare the properties of polygons. [Geometry Goal 2]	3.7-3.10			11, 12	
Create and define tessellations. [Geometry Goal 3]	3.8	7			19, 20
Use table data to answer questions. [Data and Chance Goal 2]	$3 \cdot 2$				18

2 Building Background for Unit 4

Math Boxes 3.11 previews and practices skills for Unit 4.
The Unit 4 Family Letter introduces families to Unit 4 topics and terms.

materials

Math Journal 1, p. 98
\square Study Link Masters (Math Masters, pp. 98-101)

Additional Information

See Assessment Handbook, pages 68-75 for additional assessment information. For assessment checklists, see pages 254-257.

Technology

Assessment Management System Progress Check 3
See the iTLG.

