LESSON

Time

Part A

Measure each angle below with a protractor. Then choose a word from the list to name each angle type: acute, obtuse, adjacent, right.

Written Assessment continued

Use your Geometry Template to do the following:

- **6.** Draw an equilateral triangle.
- Draw an isosceles triangle
 B. Draw a scalene triangle. that is not equilateral.

9. List at least one way in which an equilateral triangle and a scalene triangle are the same.

10. List at least one way in which an equilateral triangle and a scalene triangle are different.

For each polygon below, fill in the ovals next to all true statements.

- 11.

 - O This polygon is a quadrangle.
 - () At least two sides are parallel.
 - O At least two angles are congruent.
 - () This is a regular polygon.

- 12.
 - $\ensuremath{\mathsf{O}}$ This polygon is a quadrangle.
 - O At least two sides are parallel.
 - O At least one angle is acute.
 - O At least two angles are congruent.
 - O This is a regular polygon.

a. At the right, use a straightedge to draw a pair of adjacent angles. Make one of the angles obtuse. Use letters to name the angles.

b. Tell which angle is obtuse.

- ∠ _____
- without using your protractor, estimate the measure of each angle to the nearest 10°.

 $m \angle$ _____ is about _____. $m \angle$ _____ is about _____.

18. Use the table below to answer the questions on the next page.

Regional Populations 1850–2000								
Region	1850	1900	1950	2000				
Northeast region	8,627,000	21,047,000	39,478,000	52,107,000				
South region	8,983,000	24,524,000	47,197,000	97,614,000				
Midwest region	5,404,000	26,333,000	44,461,000	63,502,000				
West region	179,000	4,309,000	20,190,000	61,412,000				

Written Assessment continued

- a. Which region had the smallest population in 1950?
- b. Which region had the smallest population 50 years later?
- c. Which region had the greatest increase in population from 1850 to 2000?

What was the increase? _____

19. Use the pattern-block shapes on your Geometry Template to make a pattern that tessellates below. (The pattern-block shapes are marked PB.)

20. Explain why your pattern is a tessellation.

Progress Check 3

Ø

Objective To assess students' progress on mathematical content through the end of Unit 3.

Assessing Progress

Progress Check 3 is a cumulative assessment of concepts and skills taught in Unit 3 and in previous units.

See the Appendix for a complete list of Grade 5 Goals.

materials

Study Link 3-10

 Assessment Masters (Assessment Handbook, pp. 164–169)

□ slate

		ASSESSMENT ITEMS			
CONTENT ASSESSED	LESSON(S)	SELF	ORAL/SLATE	WRITTEN	
				PART A	PART B
Identify place value in numbers to billions. [Number and Numeration Goal 1]	3•1, 3•3, 3•5, 3•7, 3•9	1	1, 3	5	
Determine angle measures based on relationships between angles. [Geometry Goal 1]	3•3, 3•5, 3•6, 3•8–3•10				13, 14, 15, 17
Identify types of angles. [Geometry Goal 1]	3•3–3•5, 3•10	2		4	16
Measure angles. [Geometry Goal 1]	3•4–3•7, 3•9	3		1, 2, 3	
Draw and identify types of triangles. [Geometry Goal 2]	3•6, 3•10	4, 5, 6		6–10	
Compare the properties of polygons. [Geometry Goal 2]	3•7–3•10			11, 12	
Create and define tessellations. [Geometry Goal 3]	3•8	7			19, 20
Use table data to answer questions.	3•2				18

Building Background for Unit 4

Math Boxes 3·11 previews and practices skills for Unit 4. The Unit 4 Family Letter introduces families to Unit 4 topics and terms.

Additional Information

See Assessment Handbook, pages 68–75 for additional assessment information. For assessment checklists, see pages 254–257.

materials

☐ Math Journal 1, p. 98

□ Study Link Masters (Math Masters, pp. 98–101)

Technology

Assessment Management System Progress Check 3 See the iTLG.